3.97 \(\int \frac{-1+\sqrt{3}+x}{\sqrt{-1+x^3}} \, dx\)

Optimal. Leaf size=263 \[ -\frac{4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right ),4 \sqrt{3}-7\right )}{\sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}-\frac{2 \sqrt{x^3-1}}{-x-\sqrt{3}+1}+\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

[Out]

(-2*Sqrt[-1 + x^3])/(1 - Sqrt[3] - x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x
)^2]*EllipticE[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 - x)/(1 - Sqrt[3] - x)
^2)]*Sqrt[-1 + x^3]) - (4*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[
ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 +
x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0502606, antiderivative size = 263, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1880, 219, 1879} \[ -\frac{2 \sqrt{x^3-1}}{-x-\sqrt{3}+1}-\frac{4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}+\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

Antiderivative was successfully verified.

[In]

Int[(-1 + Sqrt[3] + x)/Sqrt[-1 + x^3],x]

[Out]

(-2*Sqrt[-1 + x^3])/(1 - Sqrt[3] - x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x
)^2]*EllipticE[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 - x)/(1 - Sqrt[3] - x)
^2)]*Sqrt[-1 + x^3]) - (4*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[
ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 +
x^3])

Rule 1880

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 + Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 + Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && NeQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 1879

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 + Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 + Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 - Sqrt[3])*s + r*x)), x
] + Simp[(3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[-((s
*(s + r*x))/((1 - Sqrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{-1+\sqrt{3}+x}{\sqrt{-1+x^3}} \, dx &=\left (2 \sqrt{3}\right ) \int \frac{1}{\sqrt{-1+x^3}} \, dx-\int \frac{1+\sqrt{3}-x}{\sqrt{-1+x^3}} \, dx\\ &=-\frac{2 \sqrt{-1+x^3}}{1-\sqrt{3}-x}+\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} E\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}-\frac{4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0203051, size = 63, normalized size = 0.24 \[ \frac{x \sqrt{1-x^3} \left (2 \left (\sqrt{3}-1\right ) \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};x^3\right )+x \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};x^3\right )\right )}{2 \sqrt{x^3-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(-1 + Sqrt[3] + x)/Sqrt[-1 + x^3],x]

[Out]

(x*Sqrt[1 - x^3]*(2*(-1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, x^3] + x*Hypergeometric2F1[1/2, 2/3, 5/3,
x^3]))/(2*Sqrt[-1 + x^3])

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 407, normalized size = 1.6 \begin{align*} 2\,{\frac{-3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}-1}}\sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}} \left ( \left ( 3/2-i/2\sqrt{3} \right ){\it EllipticE} \left ( \sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) + \left ( -1/2+i/2\sqrt{3} \right ){\it EllipticF} \left ( \sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) \right ) }-2\,{\frac{-3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}-1}}\sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) }+2\,{\frac{\sqrt{3} \left ( -3/2-i/2\sqrt{3} \right ) }{\sqrt{{x}^{3}-1}}\sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{-1+x}{-3/2-i/2\sqrt{3}}}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+x+3^(1/2))/(x^3-1)^(1/2),x)

[Out]

2*(-3/2-1/2*I*3^(1/2))*((-1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*(
(x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*((3/2-1/2*I*3^(1/2))*EllipticE(((-1+x)/(-3/2-1/
2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))+(-1/2+1/2*I*3^(1/2))*EllipticF(((-1+x)/(-
3/2-1/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)))-2*(-3/2-1/2*I*3^(1/2))*((-1+x)/(-3
/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3
^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((-1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(
1/2)))^(1/2))+2*3^(1/2)*(-3/2-1/2*I*3^(1/2))*((-1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1
/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((-1+x)/(-3/2-1
/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + \sqrt{3} - 1}{\sqrt{x^{3} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) - 1)/sqrt(x^3 - 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x + \sqrt{3} - 1}{\sqrt{x^{3} - 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral((x + sqrt(3) - 1)/sqrt(x^3 - 1), x)

________________________________________________________________________________________

Sympy [A]  time = 1.68934, size = 82, normalized size = 0.31 \begin{align*} - \frac{i x^{2} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{x^{3}} \right )}}{3 \Gamma \left (\frac{5}{3}\right )} - \frac{\sqrt{3} i x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{x^{3}} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} + \frac{i x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{x^{3}} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3**(1/2))/(x**3-1)**(1/2),x)

[Out]

-I*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3)/(3*gamma(5/3)) - sqrt(3)*I*x*gamma(1/3)*hyper((1/3, 1/2), (
4/3,), x**3)/(3*gamma(4/3)) + I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3)/(3*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + \sqrt{3} - 1}{\sqrt{x^{3} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate((x + sqrt(3) - 1)/sqrt(x^3 - 1), x)